
Energy Attacks on Mobile Devices

Ashish Kundu
IBM T J Watson Research

Yorktown Heights, NY
akundu@us.ibm.com

Zhiqiang Lin
University Texas at Dallas

Dallas, USA
zhiqiang.lin@utdallas.edu

Joshua Hammond
∗

University Texas at Dallas
Dallas, USA

ABSTRACT
All mobile devices are energy-constrained. They use batteries that
allows using the device for a limited amount of time. In general,
energy attacks on mobile devices are denial of service (DoS) type
of attacks. While previous studies have analyzed the energy at-
tacks in servers, no existing work has analyzed the energy attacks
on mobile devices. As such, in this paper, we present the first sys-
tematic study on how to exploit the energy attacks on smartphones.
In particular, we explore energy attacks from the following aspect:
hardware components, software resources, and network communi-
cations through the design and implementation of concrete mali-
cious apps, and malicious web pages. We quantitatively show how
quickly we can drain the battery through each individual attack, as
well as their combinations. Finally, we believe energy exploit will
be a practical attack vector and mobile users should be aware of
this type of attacks.

1. INTRODUCTION
Smart mobile devices are everywhere: iPhones, Android phones,

Windows phones, Blackberry, iPads, Android tablets, Smart watches,
Google glasses, so on and so forth. The computing power of these
devices is on a steep increase day-by-day with multi-core devices
already on the market such as iPhone 4S and iPhone 5. The power
of these devices and what they offer is being enabled by millions
of apps, readily available and inexpensive for the majority of users.
With such a thriving ecosystem, the security threats that come with
these devices and apps are also on a steep rise. Android app stores
have been found to contain mal-apps, re-packaged apps that include
malwares [15]. Recently, Apple’s messaging system iMessage for
their iOS devices were compromised and DoS attacks on some de-
vices using iMessage were initiated [8]. It may not be imprudent to
say that “security issues are abundant in an ecosystem that enables
freedom of sharing, and growth for its producers and consumers”.
There is a plethora of works that have studied security of smart
mobile devices (e.g., [15]).

∗The author contributed to this work and paper during the first half
of 2013 when he was a student at Univ. of Texas at Dallas.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

A common aspect of all such devices is they are energy-constrained,
unlike their desktop and server counterparts. In particular, these
devices include a battery that powers the computation and all its
usage. If the battery is drained completely or to an unusable level,
neither the user nor the apps installed on it can use the device in the
way(s) they need to. What if an attacker manages to carry out at-
tacks that drain the energy of a device so that the device is impaired
and cannot be used until it is recharged again? In this paper, we fo-
cus on this type of attacks, which we refer to as “energy attacks on
smartphones.” There have been previous works related to energy
attacks on server systems by Wu et al. [13]. Also, there have been
works focusing on energy estimation of Android usage [10, 12].
However, existing works have not focused on how attackers can
carry out energy attacks.

Consider the following use-case of carrying out such an attack
– an espionage scenario (relevant to a Bond or a Bourne Identity
movie) – “To kill a device”: a spy is waiting for a directive from
her boss on her smartphone. The directive can arrive in any way
– as a call, a message and at any point in next one hour of train
ride. The mafia, who want to prevent the spy from carrying out the
directive, have to succeed. One way to enable that is to try to kill
the spy, a high risk-high return proposition. The other way to en-
able that is to “kill the device” via energy attacks. The mafia uses
its pre-created hundreds of accounts on google voice, and makes
calls to this device continuously from these google voice accounts.
The spy cannot shutdown her device, or disable calling/messaging
capabilities because she has to receive the directive via the smart-
phone. The continuous calls lead to “vibration” and/or ringing of
the device, leading to energy drainage, and eventually “killing the
device” by draining most of its energy.

Such an attack can be easily thwarted by enabling a white list of
who can call and who cannot call. However, if an app used by the
spy has such a vulnerability or has been developed with a backdoor
to carrying out energy attacks – such an access control would not
work. The question is how effective such app-based attacks would
be? This paper delves deeper and studies the different components
of Android operating system, its energy usage and how fast battery
can be drained on Android devices. Android commands the smart-
phone industry as the most-used operating system, as of now. An
attacker could potentially include malicious code into an otherwise
benign application in an attempt to deny access to a user. Even
advanced users may be unaware of how much battery power each
component can drain, and how quickly could a malicious applica-
tion could drain the battery. Through our experiments and analysis
we seek to understand the elements of a successful energy attack.

Our contributions: We present a taxonomy of the energy attacks
on mobile devices (§2), and use it to guide the development of en-

1

ar
X

iv
:1

70
4.

04
46

4v
1

 [
cs

.C
R

]
 1

4
A

pr
 2

01
7

ergy exploits (§3) by systematically exploring hardware, software,
and network elements (§4). Our experimental result (§5 shows that
our energy attacks are practical, and can drain battery in a few min-
utes with a combination of multiple exploits.

2. TAXONOMY OF ENERGY ATTACKS
In this section, we first present the principles behind energy at-

tacks in §2.1, then describe why energy attacks are useful with
several compelling use cases in §2.2 and the delivery modesl for
energy attacks in §2.3, and finally present the taxonomy of such at-
tacks including the elements of on how to carry out energy attacks
and how to construct the exploits in §2.4.

2.1 Principle of Energy Attacks
Energy attack is carried out as and when any consumption and/or

depletion of energy on a device is effected by processing of opera-
tions with no legitimate purposes.

Let A be the set of operations that processing of operations and
D be a device. Suppose α ∈ A on D leads to depletion of energy
level by δ > 0 amount, then α is a candidate operation for carrying
out energy attacks. An energy-attack comprises of carrying out one
or more candidate operations on the target device with an objective
to deplete the energy of a device by an amount that is greater than
zero and less than or equal to 100%. If the event that triggers pro-
cessing of a subset of candidate operations drawn from A on D,
has its origin in a malicious intention, then the process of energy
depletion on the device is called an energy attack. If the event does
not have its origin in a malicious intention, then it could be called
a bug.

In current computational model, we can safely assume that all
operations are candidate operations including the “NOP” opera-
tions implemented at the hardware level. “NOP” operations do not
lead to any operation being carried out, but it definitely consumes
at least one CPU cycle, and thus leads to consumption of energy,
which would lead to depletion of energy on the device (theoreti-
cally carrying out some number of NOP operations is a form of
energy attacks.

A practical energy attack would associate a temporal constraint
on the amount of energy being depleted: the rate of consumption
of energy by a specific combination of the candidate operations is
defined as the ratio of amount of energy consumed over a period of
tδ time and tδ . The greater the rate of consumption of energy, the
more the efficacy of the combination in terms of energy attack.

2.2 Malicious Motivation and Use-cases
The question is why is an “energy attack on devices” an appeal-

ing attack, and what would an attacker gain from carrying out such
an attack? Let us describe some other use-cases in addition to the
espionage one described in § 1:

• To kill the devices that are parts of a botnet: In order to con-
trol the extent of damage a network of device-based bots can
carry out, the immediate mitigation maybe to shut those de-
vices down or remove them from the network (as is done in
the case of desktops and servers). However, unlike the desk-
tops and servers, devices are mobile, move from one network
to another, from 4G to WiFi and thus it is harder to control
them. Therefore one feasible option is to “drain the energy
of those devices remotely” by carrying out energy attacks.

• If law-enforcement gets to know the devices being used by
terrorists posing an imminent threat of a terrorist attack, in

order to disband their strategy and prevent them from com-
municating with each other, a stealth energy attack could be
launched on those devices by law-enforcement.

• Mobile devices are being used to detonate bombs. If law-
enforcement know the mobile devices that are attached to the
bomb, or being used to detonate the bombs, perhaps a way to
prevent the bomb from being detonated is to drain the device
of energy.

• Protection of a personal device after being lost or stolen: it
is common to lose or get one’s device stolen. Devices con-
tain sensitive personal and corporate data; many of the smart
devices today have active sessions with web services such
as gmail, facebook; the devices are configured to ask for a
password at startup. The owner of the device would want
to minimize the risk of the device being on the hands of a
malicious user X. By carrying out an energy attack on the
device, the owner would accomplish some or all of the fol-
lowing: (1) prevent the user X to gain access to the device
at all as a restart would ask for a password, (2) prevent the
user X to gain access to the device at least for sometime until
it is charged again, (3) prevent the user to gain access to the
active sessions, which are lost after the device re-starts.

• Business competitors carry out stealthy attacks: Consider
that one of the businesses in the smartphone market wants to
show that its battery is more powerful than the a competitor.
In order to bolster its claim among users of the competitor’s
device, it could launch energy attacks remotely with an ob-
jective to drain the energy quicker than it does for common
user activities. That would demonstrate the battery life and
convince the users that the battery of the competitor’s device
is not up to the expectation.

• A futuristic scenario: As vehicles involve computing and
smart-networks as part of enabling vehicular networks, they
would also rely on battery power to remain operable when
not being driven. For example, in order to prevent some-
one from traveling, one may need to jeopardize their car. If
the car is not within physical control, can someone attack its
battery by sending multiple network packets or unlocking re-
quests, or locking requests? Once the battery dies, perhaps
that would make the vehicle, which is highly reliant on the
battery, remain nonoperational until the battery is recharged
again.

2.3 Delivery Models of Energy Attacks
Attackers can make use of the following delivery and business

models:

• Energy-Attacks-as-a-Service: As a cyber-underworld propo-
sition or available to common users, such a service would
allow attackers to carry out targeted energy attacks for mon-
etary payments or similar other services as exchange. For
legitimate usage, such a service would require a requesting
party to verify its identity against the device (that it owns or
has authoritative power) on the device, or it has a court or-
der to do so, or certain government agencies have provided
the power to carry out such an attack. As a business model,
the attackers can use a subscription-based business model, or
pay-per-use.

• Back-doors for efficient energy attacks: Devices can be de-
signed with backdoors available to legitimate parties for en-
ergy attacks. The legitimate parties could be the owner, net-
work providers, vendor or government agencies. However,

2

Goal Targets Control Location of
Launch

Elements Degree of
Stealthiness

User Control Process

Kill device Targeted
•One device
•Multiple devices

• Constraint‐
satisfying

• All/any

Controlled Local:
•App‐driven
•System‐driven

Hardware
•Resources
•Operations

Least stealth
(detected by
onlookers)

Detectability Attacker
devices

Partially
drain

Un‐targated
• Constraint‐satisfying

devices
•All/any

Un‐
controlled

Proximity
•Bluetooth

Software
•Resources
•APIs

Stealthy from
onlookers
(detected by
user)

Mitigation
•Shutdown
device
•Stop
apps/services

Human
involvement

Event‐based
drain

Remote
•Network‐
driven

Network
•Resources
•Network
operations
•Data transfer

Stealthy from
user
(detected by
system app)

Automated
agents

Ruin battery
performance

Hybrid: mix of
•Local
•Proximity
•Remote

Stealthy from
system app
(detected by
third‐party
app)

Stealth mode

Stealthy from
apps
(detected
from system
logs)

Attack policies

Event‐based
progress

Workflow

Figure 1: Taxonomy of energy attacks

such backdoors need to be enabled with stringent access con-
trol in order to prevent exploitation by malicious attackers.

Some concerns against energy attacks: Energy attacks could be
ineffective when the device is being charged. Moreover, even if
there is value that can be gained out of “killing one’s device” via
energy attacks, how effective would be carrying out such attacks?
How much time would it require for an attacker to drain the energy
of a device with the available exploits? What information is essen-
tial for the attacker to know about the real-time status of the device
in order to make the attack successful?

2.4 Taxonomy
In this section, we present the taxonomy of energy attacks. The

following Figure 1 specifies the taxonomy, and the different tech-
nical aspects of the attack – why and how. Each column describes
the attack in a more detailed manner.

Energy attacks are classified with respect to the following pa-
rameters:

1. Goals: There could be four different goals depending how
much energy is drained. The first one is to completely drain
the energy of the device (kill the device). The second one
is to drain the energy partially by a certain percentage or by
certain rate or by some specific amount. The third goal is
to start and/or stop draining the energy of a device based on
some events, and the last one is to drain the energy of the

battery so that the battery performance is ruined over a period
of time.

2. Targets: Targets of the attack can be one specific device or
more than one devices, belonging to one individual or group
or satisfying some constraints, such as location. The attack
could be un-targeted – any device that satisfies a constraint
such as having an app or visiting a webpage can be attacked.

3. Control: “Is the attack controlled by the attacker or uncon-
trolled” is an important aspect of the attack. Whether the
attack can start or stop an attack and select or de-select some
targets at the attacker’s will defines whether it is controlled
or not.

4. Locations of launch: Where is the attack being launched
from – where is the attacker? The attack is definitely occur-
ring on the device, but it may be launched from an app or
webpage on the device. It maybe launched from other de-
vices in close proximity, or remotely over the network.

5. Elements of the attack: In order to build an exploit, several
elements need to be used together. Hardware resources such
as GPS, sensors and their operations could be used. Software
resources such as system calls, API, memory allocation and
de-allocation, locking and unlocking can be used for building
an attack. Network-level operations such as data transfer,

3

control operations such as handshaking protocols and various
network resources such as the bandwidth and antenna could
be used to build energy attacks.

6. Process of the attack: An exploit is built, but how to actu-
ally implement the attack on a specific target in a controlled
or un-controlled manner? Devices could act as attack origins;
humans may be involved in launching and controlling the at-
tack; automated agents could be involved. The attack could
be delivered in stealth mode so that the user could not dis-
cern whether there is an attack going on or it is the common
behavior of the device battery; what are the attack policies
– how, when and from where to deliver the attack, and how
to monitor and manage the attack – based on what events?
A workflow may be used to describe an attack delivery. For
example, an attack is delivered by sending a message to the
user about a free app, and after the user installs it, the app
then talks to its command center on an attacker device on
how to start the attack and how to monitor such an attack.

Degree of Stealthiness To determine whether an attack is stealthy
or not stealthy at all, we have defined a scale of detectability of
energy attacks (by detecting use of some components):

1. Detectable from a distance (stealthiness: 0): a component
could be detected to be used if the device were, for example,
in the user’s pocket or purse.

2. Detectable during normal usage (stealthiness: 1): includes
things like a noticeable change in responsiveness of the de-
vice.

3. Detectable with built-in applications (stealthiness: 2): the
device comes standard with some program or monitor that
detects high usage of a component.

4. Detectable with third party applications (stealthiness: 3): a
component’s usage is easily detectable with applications avail-
able through the standard marketplace.

5. Detectable with access to low level functions or system ac-
cess (stealthiness: 4): to detect a component the user may
have to write a program to read and analyze some measure-
ments, or may have to access system logs or process infor-
mation in order to find which component is using significant
battery power.

For the first two levels, we would expect a component’s usage to
be detected by almost every Android user. To detect attacks that are
at the third and fourth level, the user needs to have certain minimal
knowledge of the device – such as which applications could be used
to monitor CPU usage and battery drainage. The user needs to
realize that the battery is being drained more than usual, and needs
to know where to look for these applications and how to use them.
At the fifth level we would only expect a user to detect the drain
if the user has some familiarity with development on the Android
platform. At the fifth level, a user would likely need to actively
monitor battery usage and then need the knowledge and experience
necessary to write a new application to detect it, or to access system
resources to determine the cause.

We decided that this would be the toughest level as we do not
foresee any component being completely unnoticeable or even re-
quiring hardware access to monitor and detect. Because each level
requires more user involvement and skills on the part of the user
from 1 to 5 in that order, we use only the lowest level for each

component. This will give an idea of the very minimum amount
of knowledge and skill required to detect the use of a component
that has a large impact on the battery. For this part of our testing
we used our application to turn on each component but did not set
a certain battery level threshold. While each component is running
we attempt to detect that the particular component is running either
at an abnormal level, or running when there should not be an ap-
plication using that component (other than our own). We start by
attempting to detect it at level one. If significant usage is detected
we stop and record the level at which the usage was detected. If,
after a reasonable effort, the usage is not detected, we go up to the
next step and again attempt to detect the component’s usage. For
the purpose of this research we do not attempt to find which ap-
plication is using the component, but merely that the component
is being used in a way that may drain the battery. Finally we give
information on each component that may make use of the compo-
nent more difficult or preventable. We specifically make note of
settings that may need to be on for a component to work. This is
closely coupled with the permissions required for an application to
make use of each component. Knowing this makes it much easier
to detect an application that may have a large impact on battery be-
fore it is installed. This information allows users to make a more
informed decision about whether an application can use the access
rights, that the users gives to it, to drain the battery.

3. BUILDING AN EXPLOIT
Building an exploit for energy attack does not depend on tradi-

tional vulnerabilties in software stack, hardware devices or in cryp-
tography. That makes it easy to build such an attack and hard to
defend.

An exploit uses each of the aspects of the taxonomy discussed
earlier. An attacker decides the goal(s), the targets of the attack and
controls on the attack. Based on the available methods of attack
delivery, the attacker can decide the elements to be used for the
attack. If the attack delivery method available to the attacker is via
installing an app on the device via a promotional ad, the attacker
then goes ahead and implements the app that uses several elements
of the attack. If the attacker has access to a backdoor on the device,
then based on the elements exposed via the backdoor, exploit can
be built.

Delivering the attack after building an exploit can be implemented
in several ways. By getting the user to install the app by luring it
for a coupon, or by some other social engineering method, the at-
tack via the app can be delivered. The delivery model then can be
Energy-attack-as-a-Service or via backdoor exposed via the app.
How to get the attack delivered is part of building the attack; how-
ever, due to constraints on the page length, we would not go into
further details.

Delivering the exploit to the device Several techniques can be
used to deliver the exploit to the device(s). Some of the ways to
attack a device are:

Attacker knows the phone number:

1. Attacker sends a message with a coupon or similar monetary
incentive and asks the user to install the app or visit website
to get the coupon.

2. App: delivers more control on the attack. An app could in-
clude the exploits during its development, or introduced dur-
ing the lifecycle.

3. Visiting the website delivers the attack only for the time of
visit.

4

Attacker knows the user’s name:

1. If the attacker is a social network or one of its admins or
a gaming service that the user has enrolled in, and has its
app installed on the device, or if the attacker can carry out a
network-based man-in-the-middle attack by injecting traffic:

2. the attacker pushes data, scripts and events to trigger the app.

3. the attacker then can lure the user as in previous example to
install other apps or visit webpages.

Attacker knows the webpages the user visits:

1. The attacker controls the webpages, then it can add energy-
consuming software and network elements. In particular, a
web-page may contain java-scripts that carry out energy at-
tacks. These java-scripts could contain infinite loops, or re-
cursive code, or data download, malicious applets, etc., to
drain the battery.

2. The attacker otherwise can use Google Ads or such other
services for displaying advertisements including javascripts
that do not look malicious but carry out energy attacks.

4. ELEMENTS OF ENERGY ATTACKS
In this section, we describe the elements of the exploit. There

are in general three types of elements: hardware, software, and net-
work. Hardware elements are rarely exposed as they are – software
elements are almost always combined with hardware elements. For
example, accessing GPS is allowed from an app, which thus can in-
clude some software-based elements in the exploit. Network-based
elements can be used along with the software elements. A software
app can maliciously download more data than needed thus con-
suming the energy via network elements and software elements.
In order to determine how effective each hardware, software, and
network element is towards carrying out energy attacks, we carried
out several experiments by developing the exploits as apps, web-
pages based each elements or a combination of them. A high level
overview of these elements is presented in Fig. 2. In the following,
we present how to construct the concrete attacks by using these
elements.

Experiment Setup In order to determine the efficacy of energy at-
tacks by using the components, we need to determine how long it
takes to achieve the goal of the attack – draining energy by using
the corresponding components. We carried out two types of exper-
iments: (1) for draining energy from 100% to 0% (kill the device),
and (2) an energy depletion by 5% (partial draining). We also did a
control test. In each of our tests the screen is wake-locked, which
means the display will not turn off and the phone will not enter
sleep mode. This is necessary so that the operating system does
not begin powering down components and give inaccurate readings
as to their battery usage. Thereby we also acquire the wake-lock
for the control test. By using this wake-locked control we can see
how much energy is consumed by each component compared to the
wake-lock and that should give us an accurate comparison of which
components consume more energy. §5 will present the detailed ex-
perimental results.

Single vs. Combination: Exploits could be based on a single ele-
ment or a combination of elements, and can be parallel or sequen-
tial. Parallel exploits are expected to be more effective in carrying
out energy attacks because, the software, hardware or network ele-
ments each thread or parallel process uses consumes power, as well

CPU Memory Phone

Camera Flash Screen

Screen GPS

WIFI Bluetooth

Computing I/O API

Resources Activities UI

Transmitter 3G/4G DOS

Receiver DNS SSL

Software Network

Hardware

Figure 2: Overview of the Exploit Elements

as there is a cost of scheduling and bookkeeping of threads/processes
at the system level. In the exploits we have experimented with, if
it is a combination of elements, then we have tried to maximize the
battery drainage by making it parallel – either at process-level or at
the app level.

While most energy attacks would be a complex combination of
elements of different categories – software, hardware, network and
would be used both in sequential and parallel; in order to quantify
how effective such exploits would be, we need to understand how
effective and quantify the energy draining capabilities of exploits
developed based on single elements.

4.1 Hardware Elements
Using hardware components of a device can drain the battery

significantly. Several hardware components/sensors are part of the
hardware packaging of the device. Some such components cover-
ing some of the common components across devices running An-
droid and iOS: Other than CPU, display and brightness via ambient
sensor, camera, flash, bluetooth, Wifi, 3G or 4G, GPS, gyroscope,
accelerometer, proximity sensor, and magnetometer.

The fundamental method of carrying out effective hardware-level
energy attack is: to develop an exploit based on the hardware el-
ements that can be used concurrently with minimum authorization
needed, and consume most amount of power when used concur-
rently together. Determine these elements and their combination
statically and/or dynamically depending on the state of the device
and the elements.

4.1.1 Basic Components
CPU: In order to determine how effective CPU-intensive ex-

ploits would be, we used an app that carries out matrix multipli-
cation using two threads. The matrix multiplication starts with two
initial matrices and then continues to multiply the resulting matrix
by one of the starting matrices. In our experiments, this has a CPU
utilization of up to 90%, which is a good measure of the efficacy of
CPU-intensive exploits. Compute-intensive exploits may or may
not be stealthy at all depending on how the system handles high
CPU utilization – some systems may not respond to user interac-
tion well, which makes the attack somewhat less stealthy.

Memory: Memory, especially video memory consumes a large
amount of energy. Playing video would exploit this consumption
of energy, which however, would not be stealthy at all. In our im-
plementation, we loaded a video to the memory, and played it in
an infinite loop. However, playing different videos would be more

5

effective as it includes writing to the video memory for each new
video other than reading and refreshing the memory.

Phone: In order to exploit the phone call functionality, an echo
number is used as the other number to be called. The advantages of
using an echo number are: it does not require extra participants to
receive a call; it does not disconnect prematurely. It can be stealthy
until the user tries to use the phone functionality and discovers that
a call is being made (phones do not have the mechanism for multi-
ple active call sessions).

Camera flash: Camera flash can be used to attack the device,
but it is not stealthy at all. In our exploit, we have an infinite loop
that turns the camera’s flash on then off. Theoretically, leaving the
flash light on will drain less energy than when turned off and on
continuously.

Camera: Camera of a device uses several resources and thus an
important candidate for building ane exploit. This element is of
medium stealth, but user interaction with the camera would reveal
the app being used. To exploit the photo capability and we used the
camera interface, rather than the normal method of calling another
application to take care of the actual photography. This gave us
more control over what components were being used, allowed us
to take pictures rapidly, and allowed us to automate the process.

4.1.2 Sensors
There are several other sensors that can be used to build exploits.

Android supports a sensor API framework, which allows the pro-
gram to determine the power requirements of each sensor. An ex-
ploit may use these APIs and determine the sensors that require
the most power dynamically and start using some of them. In the
following discussion, we describe some of the sensors with which
we have developed exploits. Other sensors such as accelerometer,
gyroscope, proximity sensors, light sensors, magnetometer, tem-
perature and pressure sensors can be exploited similarly. Adding
a listener, removing a listener, probing a sensor, acquire the sen-
sor data continuously are different actions that can be carried out
repetitively and in parallel to drain the energy.

Screen brightness sensors: Screen brightness is highly non-stealthy
and also consumes large amount of energy. For testing screen
brightness we turned the brightness up to its maximum while in
our wake locked state. It is important to note that this test would
not be accurate without the wake-lock that keeps the display ac-
tive. For this component to drain the battery at the levels we record
in our experiment, the display must remain active throughout the
entire period. It is also important to note that during our experi-
ments we were unable to turn up the brightness when the battery
was low (as controlled by the Android OS). This also requires that
the phone stay awake and may not functionally drain the battery
from the background.

GPS: GPS component as an element of energy attacks can be
effective and are highly non-stealthy, as most devices show use of
GPS on the top-bar of the phone. To test the GPS component, we
enabled a location listener and constantly read the location of the
device. This is similar to how a GPS would have to be used with a
map application, to maintain a current and accurate location.

Bluetooth: Switching bluetooth on and off itself can consume
energy. This activity can be a stealthy one as long as bluetooth
activity can be hidden from the display and UI.

4.2 Software Elements
Software elements may be compute-intensive, I/O-intensive, network-

intensive or sensor-intensive, or a mix of both of them. The software-
level elements include OS-level APIs, resources such as locks and
semaphores, threads/processes, libraries, software cache, file sys-

tem, system calls, sockets, events and notifications, and messages.
Higher-level elements are activities, UI components, Java libraries
and so on. We have developed exploits on a combination of some
of these APIs.

In order to develop an effective energy attack based on software-
based elements, a rule of thumb is: An effective energy attack uses
software elements that can be used concurrently and that consume
most amount of energy when used together.

Some of the rules of thumbs is to use elements that:

1. lead to as many context switches, memory swapping and I/O
as possible.

2. run stealthily – in the background and does not interfere with
useability of the device.

3. force using system calls and/or lead to interrupts

4. are complex mathematical operations such as cryptography,
matrix multiplication, graphics.

5. belong to different libraries, use data blocks from different
memory pages thus defeating the locality-of-reference strat-
egy.

6. start servers that listen to on some ports creating backdoors
to the device.

In our experiments, we developed exploits based on cryptog-
raphy, matrix multiplication, notification, database operations and
web-based operations.

Cryptography: Cryptographic operations such as encryption, dig-
ital signatures involve complex mathematics and are expensive op-
erations. They also run quite stealthily and are known to consume
lot of energy especially when cryptographic accelerators are not in
use. Our exploits used RSA encryption and signature generation.

Database Operations: Database I/O also is a stealth operation
and is expensive. Table creation, deletion, data addition and re-
moval are to be included in the operations. If caching can be dis-
abled by the attacker programmatically with no higher privilege
required, it should be disabled.

Notifications: Notifications are very common in consumer ap-
plications and we thought it would be important to show their im-
pact. To test the screen rotation we constantly swapped between
landscape and portrait layouts. Though this component was tested
through API calls, we believe that it is also a reasonable estimate
for how the device would drain power when the device is rotated
to change screen orientation. For our experiment, we constantly
opened and closed a notification.

4.3 Network Elements
The network elements use the transmitters and receivers of the

device – both for 4G, Wifi and bluetooth capabilities. Network
operations also lead to use of network stack, use of cryptography
when SSL is enabled.

The general principle of development of exploits for energy at-
tacks via network elements is: Use the network operations such
that they can be carried out concurrently with maximum data trans-
fer such as wifi and bluetooth used concurrently, as much process-
ing as possible by the network components of the device, synchro-
nize the operations such that the device has to power on and off its
transmitters and receivers as much as possible, and inject energy
attack payloads when the network communication is vulnerable.

There are several elements related to network and communica-
tion that can be exploited: bluetooth-based communication, wifi

6

and 4g-based communication, data transfer, control protocols, DNS
query attacks and so on.

Bluetooth-based Communication: Switching bluetooth on and
off itself can consume energy. This activity can be a stealthy one as
long as bluetooth activity can be hidden from the display and UI.

Wifi-download: For our download test, we have a statically coded
address for an image on the web. This image is constantly down-
loaded and written to the SD-card. Though we could have skipped
over writing to the SD-card it seems that a common application
would not download something to discard it and would likely con-
stantly store downloaded data for the application.

DNS query attack: DNS queries are sent out by the device in
clear, and a form of Kaminsky attack can be used to drain the en-
ergy of the battery significantly. Moreover, the DNS cache poison-
ing can be used to make the device send the data several times, send
data to hosts from where the destination is unreachable.

DoS Attack: Carry out DoS attacks on the open ports on the de-
vice such as via SYN-flodding attacks.

5. EVALUATION
In this section, we have described several experiments that we

have carried out to determine effectiveness of several hardware,
software and network elements in carrying out energy attacks. The
experiments include exploits developed based on single elements
or a combination of these elements.

Experimental Setup: For our experiments we used a Samsung
Captivate Glide (SAMSUNG-SGH-I927) smart phone with An-
droid Gingerbread (Android version 2.3.6). The hardware capa-
bilities covered are: CPU, vibration, camera flash, WiFi download,
bluetooth, phone, 4G download, brightness, video playback (video
memory), GPS, screen rotation, and camera.

Process of experiments: For each test, the app implementing an
exploit we developed, allows the tester to select which components
to enable for the test. Then, when the start button is pressed, the
application starts each individual component. After every compo-
nent has been started the application records the current time and
takes an initial reading of the battery level (reported in percent).
The main application then sleeps for two second intervals while the
component runs. Each time it wakes, it checks the current battery
level. If the difference between the original battery level and the
current level is below the threshold of five percent, then the ap-
plication goes back to sleep, with the components still running in
the background. If the threshold has been met then the applica-
tion records the current time, compares it with the starting time and
makes a notification to the user about the number of minutes the
application took to drain to the threshold. For our experiments, we
tested each component ten times. This allows us to take an average
that compensates for some of the fluctuations we may see in each
individual test.

Most effective exploits: Top three exploits that drain the battery
from 100% charge to 0% and that drain 5% of the battery with low-
est time required are described in the following table. The web
attack that includes an exploit delivered by a webpage took two
hours and forty five minutes and is the second most effective at-
tack, which moreover can be carried out in a stealth manner. The
other two attacks are not stealth but the most effective attack can
drain the battery within one hour and forty five minutes.

Top 3 exploits Time in mins
for 100% draining

1. Brightness, CPU and Camera Flash 104
2. Web attack 164
3. Screen Brightness 204
Top 3 exploits Time in mins

for 5% draining
1. Brightness, CPU and Camera Flash 4.8
2. Web attack 6.5
3. Brightness, CPU and Camera Flash 7.2

while charging

In the following table, we have presented the results of our exper-
iments on the effectives of exploits. For each component we give
five statistics: Average teim to drain 5 percent, standard deviation
of draining time, maximum time to drain 5 percent, and minimum
time. Each measurement of time is recorded in minutes.

Component Average St. Dev. Max. Min.
Vibration 19.4 1.075 21 18
CPU 9.5 0.972 11 8
Camera Flash 9.3 1.059 12 8
WiFi Down. 23.5 3.598 29 16
Bluetooth 25.2 5.514 36 18
Phone 13.8 1.932 18 12
4G Down. 11.1 1.197 13 9
Brightness 7.4 1.075 10 6
Video 16.8 1.989 22 15
GPS 17.4 1.734 19 15
Notification 26.6 4.351 33 20
Rotation 17 3.197 23 13
Photo 12 1.764 14 9
Encryption 12.3 1.059 14 11

5.1 Hardware elements
Our results show that the screen brightness drains battery faster

than any other component that we tested. This is closely followed
by the camera flash and CPU usage. Using only the brightness
would drain the battery in under two and a half hours. For our case
of normal usage, this is a rather short amount of time. A smart
phone is reasonably expected to last at least 16 hours per day (the
time a person would be awake with 8 hours of sleep each day).
This suggests that being able to detect and monitor these compo-
nents could be very important for normal users. For the case of an
attack this may be longer than an attacker would like. If the attacker
was attempting to close off usage of the phone for a specific time
or purpose, this may be ample time to detect the usage, or at least
notice the drain and begin charging the phone. We also tested the
exploit while the phone was being charged, and we found that en-
ergy attacks indeed can succeed while the phone is being charged.

The full drain using screen brightness attack took just over 204
minutes (Figure 3(a)). In figure ??, we see a large spike at the end
of this graph for the last few percent of the battery life which helps
account for the longer than expected drain time. This is where An-
droid automatically lowers the screen brightness to preserve battery
life. At that point we have already drained most of the battery and
any extended usage would not be possible. This drain may take
much longer than an attacker would like and suggests that an at-
tacker would likely need to use multiple components.

To get an idea of how multiple components perform together we
tested the three top components – brightness, camera flash, and
CPU at once. If they were completely independent we would ex-

7

6 16 26 36 46 56 66 76 86 96

Battery Drained (%)

0

50

100

150

200

250

T
im

e
(M

in
ut

es

(a) Energy drain of screen brightness attack
over full battery life

6 18 30 42 54 66 78 90

Battery Drained (%)

0

20

40

60

80

100

120

T
im

e
(M

in
ut

es
)

(b) Energy drain of 3 component (brightness,
flash and CPU) attack over full battery life

6 16 26 36 46 56 66 76 86 96

Battery Drained (%)

0

50

100

150

200

250

300

T
im

e
(M

in
ut

es
)

(c) Energy drain of camera attack over full
battery life

Figure 3: Exploitation using hardware elements.

6 18 30 42 54 66 78 90

Battery Drained (%)

0

50

100

150

200

250

T
im

e
(M

in
ut

es
)

(a) Energy drain of encryption attack over
full battery life

6 18 30 42 54 66 78 90

Battery Drained (%)

0

50

100

150

200

250

300

T
im

e
(M

in
ut

es
)

(b) Energy drain of database data generation,
addition and deletion attack over full battery
life

6 18 30 42 54 66 78 90

Battery Drained (%)

0

50

100

150

200

250

300

350

T
im

e
(M

in
tu

es
)

(c) Energy drain of database table addition
and deletion attack over full battery life

6 18 30 42 54 66 78 90

Battery Drained (%)

0

50

100

150

200

250

T
im

e
(M

in
ut

es
)

(d) Energy drain of database data encryption,
insertion and deletion attack over full battery
life

0 20 40 60 80 100

Battery Drained (%)

0

20

40

60

80

100

120

140

160

180

T
im

e
(M

in
ut

es
)

(e) Energy drain of web app attack over full
battery life

0 20 40 60 80 100

Battery Drained (%)

0

20

40

60

80

100

T
im

e
(M

in
ut

es
)

(f) Energy drain of most efficient attack over
full battery life

Figure 4: Exploitation using software elements.

8

pect that together they would drain five percent of the battery in
under three minutes. Our test showed that the three components
drained the battery in, on average, 4.8 minutes. This implies that
there is some overlapping usage within groups of components. We
also did a larger scale test of these three components. We started
with a full battery and ran all three components. For this test we
set a threshold of 2 percent, at which point the application wrote
the battery level and total time to a file. How this attack drained the
battery over time is shown by Figure 3(b)). The battery starts at
100 percent charge and drains down to 0 percent in just over 100
minutes by this attack. We also see that the attack drains almost
linearly over time. This implies that the reduction in usage of some
of the components at low power does not make a large impact on
the overall attack. However, this did cause the device to become
warm to the touch. Depending on the context of usage of the de-
vice, this may be difficult to detect or could be a major indicator of
high battery usage.

We also did some tests with our normal 5 percent threshold while
the device was connected and charging via USB. Despite the phone
being charged while the attack was going on, the attack was still
able to drain 5% of energy in an average of 7.2 minutes. This
suggests that an energy attack is certainly able to kill the device
even when it is charging. Moreover, Android allows any program
to monitor the battery level and charging state without any extra
permissions. An attacker could use this as a cue to scale up the
energy attack when the device is charging to ensure that the device
is killed.

Attack by taking photos drains the battery from 100% charge to
0% in about 265 minutes (Figure 3(c)). By just (stealthily) taking
photos using the camera, an Android phone can be drained out of
battery in over four and half hours (less than the flight time from
New York to San Francisco).

5.2 Software elements
We carried out experiments demonstrating how attacks using en-

cryption can be used to drain battery. In Figure 4(a), a 100%
charged battery was drained fully about 200 minutes. However,
the battery was about 95% drained at 175 minutes, and during the
remaining 25 minutes it drained 5% because Android reduced the
brightness of the display due to its in-built policies.

In another exploit that implemented energy drain via repetitive
database procedure: generation of strings of about 1KB, its addi-
tion to a table in the database and then deletion of the data, the bat-
tery was fully drained within 260 minutes (there is a similar spike
towards the end due to savings of energy by dimming the display by
Android) (Figure 4(b)). In Figure 4(c), the battery is drained fully
within 300 minutes by addition and deletion of tables in a database
on the device. In order to make the database-related exploit more
effective, we included encryption in the exploit: data is generated,
encrypted, added to the table, and then deleted. Figure 4(d) shows
that encryption improved the exploit effectivenes by about consid-
erable 20 minutes – it took about 240 minutes. We could add more
cryptography operations to improve this period.

We also demonstrated how a web-app with a malicious javascript
can carry out an attack. Figure 4(e) shows that such an attack is
highly effective – it took only 164 minutes to drain the battery of
the device fully. The javascript carries out network traffic and CPU
usage. The attack showed no slow down at low power and stayed
fairly consistent throughout the test. Every time the web applica-
tion is killed it is brought back up, to the same web page, by our
malicious application.

5.3 Network Elements

As described in the table above, Wifi-based data transfer drains
5% of energy at an average rate of 23.5 minutes. Bluetooth-based
data transfer drains 5% energy at an average rate of 25.2 minutes.
However, 4G-based data transfer consumes the most energy at an
average of 11.1 minutes over 5% drain. Due to space constraints,
we could not add the plots related to the energy attacks due to
network-based data transfer.

Most efficient attack: An exploit based on several hardware,
software and network elements is developed. As Figure 4(f) shows
this attack takes least amount of time – 92 minutes to drain the
battery from 100% to 0%.

5.4 Configuration of permissions
Permissions are not needed for webpages to access default el-

ements. However, for apps, permissions for each hardware ele-
ment has to be allowed, so that a malicious energy attack app has
to choose from those set of components it has the privilege of ac-
cessing. Generally the setting will have to be turned on by the user
unless the application is given the required permission to change
settings. The following table specifies the permissions required for
each element. The final column marks whether the permission is
required even if the required settings are enabled.

Component Setting Permission Req.
Vibration – VIBRATE Y
CPU – – N
Camera Flash – FLASHLIGHT Y
WiFi Down. WiFi enabled CHANGE

WIFI STATE
N

Bluetooth Bluetooth
enabled

BLUETOOTH Y

Phone – CALL PHONE Y
4G Down. Mobile data en-

abled
CHANGE
NETWORK
STATE

N

Brightness – – N
Video – – N
GPS GPS enabled ACCESS FINE

LOCATION
Y

Notification – – N
Rotation – – N
Photo – CAMERA Y
Encryption – – N

Entries with ’–’ indicate that no setting or permission is needed.
All of the permissions are under android.permission. All of the
components with no required settings or permissions are available
to any program under the Android API. For the case of normal use
these permissions should give a good idea of how a desired appli-
cation may impact battery usage. This information can be used to
make good decisions about whether an application is a potential
risk to battery life. These should also inform users on what they
may need to monitor in each application to see if it is using exces-
sive battery.

battery and their possibility of draining battery without the user
knowing. Overall for normal usage the take-away is that it is easy
and important to monitor component usage, and have an idea how
an application may impact battery life. For an attack it is impor-
tant to be prepared. Turning off any components that are not being
used can help prevent usage by applications without specific per-
missions. Monitoring programs will help detect abnormal usage
if an attack occurs. Disabling the camera, through administrative
access, may be an important part of preventing an attack. It is im-

9

portant to note that these can help mitigate the risk but will not
prevent it. An application still has access to some resources with-
out any permissions and many components may be hard to detect
if the user does not know what they are looking for or does not rec-
ognize the change.

6. RELATED WORK

Malicious Battery Draining Apps. Even though, we are not aware
of any malicious implementation of energy attacks for smartphones
running iOS and Android, we have found apps that may carry out
energy attacks inadvertently or as a side effect of other malicious
activities such as data harvesting or a side effect of suboptimized
code. Some of the apps we have found to be draining energy of a
device by operations that are not needed:

• “Flashlight” [3] by Quick Switch on iPhone 4S: It acquires
GPS, sends the location to the website perhaps for location-
specific ads and does not release it for sometime. It has been
found to drain the battery of the phone overnight, if the app
is not stopped.

• Waze [1] app does not release the “GPS” for several minutes
even though the user has stopped using the app. That leads
to battery drainage.

Energy Analysis on Mobile Devices Over the past decade, the
battery usage analysis of mobile devices has attracted a lot of atten-
tions. Neugebauer and McAuley [9] had suggested that using per-
formance counter data to accurately account power consumption
for laptops and mobile devices. To detect energy-greedy mobile
malware such as WiFi faker, Kim et al. [4] proposed a power-aware
malware detection framework by collecting application power con-
sumption signatures. Recently, Carroll and Heiser [2] has system-
atically measured the energy usage and battery lifetime of a mod-
ern mobile device, at the major subsystem level such as graphics,
GSM, WIFI, with a wide range of usage scenarios. EPROF [10]
is an energy profiler that can quatitively measure the battery usage
of smartphone apps, from system call tracing perspective based on
their earlier research [11]. Similarly, AppScope [14], an Android-
based energy metering system, uses an event-driven kernel activ-
ity monitoring to meter the application energy usage. For trou-
bleshooting battery drain issues, eDoctor [7] is a tool that can iden-
tify an abnormal app and suggest appropriate repair solution to
users.

Compared to all these works, the substantial difference is we
have different research goals. In particular, Kim et al. [4] focused
on malware detection, Carroll and Heise [2] focused on identifying
the critical components that consumes the most energy and then
giving directions to power management, EPROF [10] and App-
Scope [14] focused on the profiling of energy usage of mobile apps,
eDoctor [7] focused on the energy diagnosis, whereas we focus on
identify the stealthy and promising approach to quickly drain the
battery from offensive perspective. On the other hand, all these
techniques can facilitate us for the better measurement of the en-
ergy usage for each specific attack.

Energy Analysis on Servers While energy attack has not been
fully explored in the mobile devices, there are works that focus
on the server side. Specifically, Wu et al. [13] studied the security
aspect of modern computer power management, and designed an
energy attack that exploits a standalone server system, in a similar

fashion to the DoS attack. Not for offensive purposes, Li et al. [6]
studied the power consumption on modern enterprise storage sys-
tems for a better power efficient design. In addition, for energy
savings purposes, Sueur and Heiser [5] analyzed the modern en-
ergy saving techniques with various workloads and shed lights on
how we should analyze the usage of power-management mecha-
nisms.

7. CONCLUSIONS
Energy is a critical resource in mobile devices, and thus the

emerging dependence on smartphones for critical tasks and activi-
ties is also tied to energy availability on the device. In this paper,
we systematically analyze the attack vectors from hardware, soft-
ware, and network communication perspective to drain the battery
of a smartphone. In this paper, we have demonstrated that energy
attack on smartphones is practical, and there are many incentives to
carry out these attacks. We have studied the attack space, the tax-
onomy and the elements needed to build exploits for such attacks.
We have also designed a number of concrete exploits, and our ex-
perimental results show how individual components as well as their
combinations may be used to drain off the battery and mobile de-
vice users should be aware of these attacks.

8. REFERENCES
[1] Waze social gps maps and traffic.

https://play.google.com/store/apps/details?id=com.waze.
[2] A. Carroll and G. Heiser. An analysis of power consumption

in a smartphone. In Proceedings of the 2010 USENIX
conference on USENIX annual technical conference,
USENIXATC’10, pages 21–21, Berkeley, CA, USA, 2010.
USENIX Association.

[3] D. Gilbert. First ios malware discovered in apple’s app store,
2012. http://apple.slashdot.org/story/12/07/05/1727215/first-
ios-malware-discovered-in-apples-app-store.

[4] H. Kim, J. Smith, and K. G. Shin. Detecting energy-greedy
anomalies and mobile malware variants. In Proceedings of
the 6th international conference on Mobile systems,
applications, and services, MobiSys ’08, pages 239–252,
New York, NY, USA, 2008. ACM.

[5] E. Le Sueur and G. Heiser. Slow down or sleep, that is the
question. In Proceedings of the 2011 USENIX conference on
USENIX annual technical conference, USENIXATC’11,
pages 16–16, Berkeley, CA, USA, 2011. USENIX
Association.

[6] Z. Li, K. M. Greenan, A. W. Leung, and E. Zadok. Power
consumption in enterprise-scale backup storage systems. In
Proceedings of the 10th USENIX conference on File and
Storage Technologies, FAST’12, pages 6–6, Berkeley, CA,
USA, 2012. USENIX Association.

[7] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou,
L. K. Saul, and G. M. Voelker. edoctor: automatically
diagnosing abnormal battery drain issues on smartphones. In
Proceedings of the 10th USENIX conference on Networked
Systems Design and Implementation, nsdi’13, pages 57–70,
Berkeley, CA, USA, 2013. USENIX Association.

[8] D. Murphy. Industrious users performing imessage
denial-of-service attacks, 2013.
http://www.pcmag.com/article2/0,2817,2417267,00.asp.

[9] R. Neugebauer and D. McAuley. Energy is just another
resource: Energy accounting and energy pricing in the
nemesis os. In Proceedings of the Eighth Workshop on Hot
Topics in Operating Systems, HOTOS ’01, pages 67–,
Washington, DC, USA, 2001. IEEE Computer Society.

[10] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy
spent inside my app?: fine grained energy accounting on
smartphones with eprof. In Proceedings of the 7th ACM
european conference on Computer Systems, pages 29–42.
ACM, 2012.

10

[11] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.
Fine-grained power modeling for smartphones using system
call tracing. In Proceedings of the sixth conference on
Computer systems, EuroSys ’11, pages 153–168, New York,
NY, USA, 2011. ACM.

[12] K. Paul and T. Kundu. Android on mobile devices: An
energy perspective. In Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference
on, pages 2421–2426, 2010.

[13] Z. Wu, M. Xie, and H. Wang. Energy attack on server
systems. In Proceedings of the 5th USENIX conference on
Offensive technologies. USENIX Association, 2011.

[14] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. Appscope:
application energy metering framework for android
smartphones using kernel activity monitoring. In
Proceedings of the 2012 USENIX conference on Annual
Technical Conference, USENIX ATC’12, pages 36–36,
Berkeley, CA, USA, 2012. USENIX Association.

[15] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and Privacy (SP),
2012 IEEE Symposium on, pages 95–109. IEEE, 2012.

11

	1 Introduction
	2 Taxonomy of Energy Attacks
	2.1 Principle of Energy Attacks
	2.2 Malicious Motivation and Use-cases
	2.3 Delivery Models of Energy Attacks
	2.4 Taxonomy

	3 Building an Exploit
	4 Elements of Energy Attacks
	4.1 Hardware Elements
	4.1.1 Basic Components
	4.1.2 Sensors

	4.2 Software Elements
	4.3 Network Elements

	5 Evaluation
	5.1 Hardware elements
	5.2 Software elements
	5.3 Network Elements
	5.4 Configuration of permissions

	6 Related Work
	7 Conclusions
	8 References

